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Abstract: We investigate the weak gravity bounds on the U(1) gauge theory and scalar

field theories in various dimensional noncommutative space. Many results are obtained,

such as the upper bound on the noncommutative scale gY MMp for four dimensional non-

commutative U(1) gauge theory. We also discuss the weak gravity bounds on their commu-

tative counterparts. For example, our result on 4 dimensional noncommutative U(1) gauge

theory reduces in certain limit to its commutative counterpart suggested by Arkani-Hamed

et.al at least at tree-level.
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By now, low energy effective field theory has become the cornerstone in our description

of nature. One of the embarrassing features of effective field theory is that couplings of the

fields are determined phenomenologically, beyond a first principal derivation. It is generally

expected that a quantum theory of gravity would shed some light on this issue. Recently in

searching for criteria to distinguish string landscape, which has a well-defined UV theory,

from the swampland, which cannot be completed to a fully self-consistent theory, it was

proposed in [1, 2] that gravity induces some constraints on the quantum field theory.

Field theory is generally well defined in the weak coupling limit. However the situation

changes when we take gravity into account, since in the weak coupling limit the nonpertur-

bative objects in the field theory are very heavy and the gravitational effects on them are

significant. In [2], requiring that the magnetic monopole should not collapse to be a black

hole yields a new nontrivial UV cutoff for the U(1) gauge theory. Some related works are

discussed in [3]–[10].

In this note we generalize the results of [2] to noncommutative gauge theory and scalar

field theory. In particular, the scalar field theory in three or higher dimensions, which has

no solitonic solutions in commutative space, will possess such solutions when promoted to

noncommutative space. Thus the mechanism proposed in [2] can be more generically used

for noncommutative field theories. The investigation of noncommutative field theory can

also give us some hints on conventional field theory.

First we consider in this note type IIB string theory with a D3-brane placed in a non-

zero B field with components along the space-space directions. It is convenient to define

the open string metric Gij , constant asymmetric matrix θij, gauge coupling gY M through

closed string metric gij , B-field Bij and string coupling gs as follows:

Gij = gij − (2πα′)2(Bg−1B)ij

θij = −(2πα′)2( 1
g+2πα′B B 1

g−2πα′B )ijg2
Y M = 2πgs(det(1 + 2πα′g−1B))

1

2 . (1)

We choose the constant B-field to be 1
2
Bdx1∧dx2, with the D3-brane lying in 0123 directions

and set the open string metric to be Euclidean Gij = δij , thus we have

B =
θ

(2πα′)2 + θ2
(2)

and

gs = g2
Y M

α′

√

(2πα′)2 + θ2
. (3)

According to [11], in the limit α′ → 0 with G, θ, g2
Y M fixed, closed string degrees of

freedom as well as massive open string degrees of freedom decouple, and the brane reduces

to a field theory, namely N = 4 super Yang-Mills theory on a noncommutative space with

[xi, xj ] = iθij. (4)

Here we need to stress that we only pay attention to the constraints on the field theory in

the noncommutative space and don’t need to take care of the origin of the noncommutative

space.
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It is also tempting to go in the reversed direction, that is, to start with the decoupled

field theory, and turn on gravitational effects gradually, and ask about the constraints

imposed by gravity upon the parameters in the field theory [2]. In [2] it was shown that

for a U(1) gauge theory in commutative space, unless the cutoff satisfies

Λ ≤ gY MM4, (5)

where M4 ∼ G4
−1/2 is the Planck scale in four dimensions, the magnetic monopole would

collapse to a black hole, ruining the validity of the effective field theory. The advantage

of the methods used in [2] is that the constraint does not depend on the particular form

of the high energy completion of the field theory, of which one still lacks of full control.

Subsequent work in this direction includes [4, 6].

The U(1) NCYM also has a monopole solution, but with a semi-infinite string attached

to it [12]. In fact, the solution is everywhere non-singular and the energy density localizes

along a half-line. The tension of the string is given by

T =
2π

g2
Y Mθ

. (6)

This soliton is qualitatively different from their commutative counterpart, which is point-

like, with no strings detached.

When one turns on gravity, a natural question to ask is how do noncommutative

field theories couple to gravity, or should they couple to conventional gravity or some

noncommutative version. In our paper, we only take care of the IR behavior of gravity and

thus we assume the noncommutative field theories are coupled to the conventional gravity.

Another question is whether the field theory solitons persist their existence when quan-

tum gravity effects are turned on. For general cases we still do not have a general proof of

their existence. But for the case at hand, which has a natural embedding in string theory,

this question has a simple positive answer. The soliton solution, a monopole with a string

detached, is just a D1-string ending on a D3-brane. And its tension can also be calculated

from the brane configuration to be exactly (6) in [12].

From the point of view of an asymptotic observer, the effect of the string is to produce

a deficit angle 8πG4T in spacetime. Requiring that the deficit angle is less than 2π yields

8πG4T ≤ 2π. (7)

Ignoring numerical factors, one gets

g2
Y Mθ ≥ G4 ∼ M−2

4 . (8)

When space-space becomes noncommutative the weak gravity conjecture yields a lower

bound on the gauge coupling; or equivalently, upper bound on the noncommutative scale

Mnc = θ−1/2 with

Mnc ≤ gY MM4. (9)

Naively to go to the commutative theory, one chooses the cutoff scale Λ to be lower than

the noncommutative scale Λ ≤ Mnc, which leads to (5). However, this is reliable only in

the tree-level approximation, because of the non-analytic behavior of θ [13] in noncom-

mutative gauge theory. In supersymmetric gauge theories the logarithmic divergences at
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small values of noncommutative momenta typically appear. One can only expect that

in N = 4 supersymmetric gauge theory even the logarithmic divergences do not occur,

and thus this noncommutative supersymmetric gauge theory reduces to its commutative

counterpart when Λ < Mnc.

It is interesting to ask about the limiting case with zero or small B field. We start from

the field theory limit, where α′ → 0, θ finite, B ∼ 1
θ , thus small values of B correspond to

large noncommutative parameter θ. When gravitational effects are still weak and α′ small

(compared to θ), small values of B correspond to large values of θ. Our constraint for the

validity of the noncommutative field theory doesn’t contradict the existence of vacua with

B = 0 or very small value of B.

We can also consider gauge theory in 2+1 dimensions. It is interesting at with non-

commutativity, even pure U(1) gauge theory admits finite energy solitonic solutions [14].

The energy is

E =
2π

g2
3

∫

dt Tr
1

2
F 2, (10)

where g3 is the U(1) gauge coupling in three dimensions. With vortex number n = TrF 2,

the simplest nonsingular fluxon solutions have energy

Mf =
πn

g2
3θ

. (11)

When gravity is turned on, we similarly get a constraint for the gauge coupling

g2
3θ

n
≥ G3, (12)

here G3 is the Newton coupling constant in three dimensions. In the n = 1 sector, Mnc =

θ−1/2 ≤ g3/
√

G3. Similarly we conjecture that Λ ≤ g3/
√

G3 for the commutative gauge

theory. Instead of the dimensional gauge coupling g3 we use the dimensionless gauge

coupling g̃3 = Λ−1/2g3
1 and thus

Λ ≤ g̃2
3/G3 ∼ g̃2

3M3. (13)

Naturalness says that the dimensionless coupling is roughly O(1) and thus Λ ≤ M3. If

there is a UV theory including gravity beyond the this effective U(1) theory, the value of

g̃3 is decided by this UV theory and the matching condition should satisfies Λ ∼ g̃2
3M3. A

similar argument is also reliable for the result in [2].

Next, we consider the noncommutative scalar field theory with polynomial potential

in φ. According to Derrick’s theorem [15], there is no finite energy solitonic solutions for

commutative scalar field theories in three and more dimensions. But noncommutativity

provides a natural mechanism for stabilizing objects of size
√

θ. For sufficiently large θ,

there are solitonic solutions [14, 16, 17] in odd dimensional scalar noncommutative field

theories with nice potentials. In the following, we use the notation of [14] and show some

concrete examples.

1In [10], the dimensionless gauge coupling is defined as g̃′

3 = M
−1/2

3
g3 and thus Λ ≤ g̃′

3M3. Since M3 is

not a reasonable scale if g̃3 < 1, we don’t use the definition in [10].
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We consider a scalar field theory with Euclidean action in 2 + 1 dimensions

S =

∫

d3x
√

g

(

1

2
gij∂iφ∂jφ + V (φ)

)

. (14)

In the canonically commuting noncommutative coordinates

z =
x1 + ix2

√
θ

z =
x1 − ix2

√
θ

, (15)

the energy is

E =

∫

d2z

(

1

2
(∂φ)2 + θV (φ)

)

. (16)

When θV is large, the potential energy dominates and we can find an approximate solitonic

solution by solving the equation dV
dφ = 0.

For an illustrating example, consider a cubic potential

V (φ) =
1

2
m2φ2 +

1

3
λ3φ

3. (17)

Solving dV
dφ = 0 yields φ = 0,−m2/λ3. With large enough θ (θ > 1/m2), the simplest

solitonic solution has energy [14, 17]

E0 = 2πθV
(

−m2/λ3

)

=
πm6θ

3λ3
2

. (18)

We can similarly turn on gravity, and this soliton will create a deficit angle in spacetime,

which should not exceed 2π

8πG3E0 ≤ 2π. (19)

Neglecting order 1 coefficients in the subsequent analysis, we get

λ3
2

m6
≥ G3θ. (20)

The cubic coupling should also be nonzero when space-space is sufficiently noncommutative.

Note that λ3 has dimension of length square and its lower bound is determined by both

gravitational effect and noncommutative effect. In the absence of gravity (G3 → 0), the

bound is trivial. Taking into account the condition for the existence of the noncommutative

soliton θ > 1/m2 yields
1

θ
≤ m2 ≤ λ3√

G3

(21)

in the noncommutative field theory. The right part of eq. (21) is independent on the

noncommutative parameter. The dimensional quantities depend on the scale Λ. Define the

dimensionless variables m̃ = Λ−1m and λ̃3 = Λ−3/2λ3. Thus eq. (21) becomes

Λ ≤
(

λ̃3

m̃2

)2

M3. (22)
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For Λ ≥ m, m̃ ≤ 1; otherwise the lightest quanta cannot be excited. Naturalness implies

λ̃3 ∼ O(1) and eq. (22) becomes Λ ≤ M3, which can be accepted by any effective field

theorist. The bound on the scale in eq. (22) becomes significant only for the weak coupled

situation.

The authors in [8] cited our results to support their conjectures. In fact, this mechanism

is very generic. One can consider for example another potential of the form

V = −λ6

6
φ6 +

λ8

8
φ8 +

1

24

λ4
6

λ3
8

, (23)

where we add the last term in order that the potential at the global minimum equals zero.

For the potential (23), the global minima are located at φ = ±
√

λ6/λ8 and the effective

mass for the field theory about one of the minima is meff =
√

2λ3
6/λ

2
8. When θm2

eff > 1,

there is a noncommutative soliton with energy

E ∼ θλ4
6

λ3
8

, (24)

and subsequently the constraint reads

λ3
8

λ4
6

≥ Gθ. (25)

Combining the condition for the existence of the noncommutative soliton yields

1

θ
≤ λ3

6

λ2
8

≤ λ2
6

λ8

M3. (26)

The first term in the potential (23) is marginal. Define the dimensionless variable λ̃8 = Λλ8.

The right part of eq. (26) becomes

λ6

λ8

≤ M3, or, Λ ≤ λ̃8

λ6

M3. (27)

For a general potential, the above calculations can be easily generalized to give a constraint

on the couplings involved if there is a solitonic solution.

Because of the absence of a principle to constraint the shape of the potential for the

scalar field, we investigate the weak gravity constraint on the scalar field theory case by

case. Here we also need to remind the reader that the noncommutative scalar field doesn’t

simply reduce to commutative scalar field theory for low momentum [18], because of the

UV/IR mixture. Whether such effects will destroy the constraints on general scalar field

theory certainly needs more study, even though the noncommutative parameter θ doesn’t

appear in eq. (22) and (27). On the other hand, the conjecture in [8] seems too strong.

For example, there is no solitonic solution for the 2+1 dimensional scalar field theory

with potential V = 1
2
m2φ2 + λ4

4
φ4 and with λ4 > 0 if m2 > 0, even in noncommutative

space. There is no evidence to support the conjecture with λ4/m
2 ≥ GN in [8]. But for

m2 = −µ2 < 0, the potential is just the potential of Higgs field in the standard model

where µ/
√

λ4 is just the electroweak energy scale. Requiring that the electroweak energy

scale should be lower than the Planck scale 1/
√

G4 leads to λ4/µ
2 ≥ G4, which is a trivial

result.
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In this short note we proposed some conjectures on the noncommutative gauge theory

and scalar field theory and related results for their commutative counterparts. The con-

straints on the noncommutative scalar field is only in odd dimensional spacetime. However

we need to keep in mind that gravity does not contain propagating degrees of freedom in

three dimensions. We have no evidence to support these constraints on the scalar field

theories in four dimensions. On the other hand, whether the noncommutative solitonic

solutions exist when the deficit angle approaches to 2π in three dimensions is still an open

question. But we believe that the magnetic monopole in U(1) gauge theory should collapse

to be a black hole when the Newton coupling constant in four dimensions is large enough

because of the conservation of the energy and the magnetic charge. However there is not a

corresponding charge for the scalar field theory. The constraints on the scalar field theories

need more study in the future. A more ambitious plan is to investigate the implication

on the inflaton potential from the viewpoint of weak gravity conjecture on the scalar field

theory.
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